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ON THE ANALYSIS AND CONSTRUCTION OF PERFECTLY MATCHED LAYERS

FOR THE LINEARIZED EULER EQUATIONS

J. s. HESTHAVEN *

Abstract. We present a detailed analysis of a recently proposed perfectly matched layer (PML) method

for the absorption of acoustic waves. The split set of equations is shown to be only weakly well-posed,

and ill-posed under small, low order, perturbations. This analysis provides an explanation for the stability

problems associated with the spilt field formulation and illustrates why applying a filter has a stabilizing

effect.

Utilizing recent results obtained within the context of electromagnetics, we develop strongly well-posed

absorbing layers for the linearized Euler equations. The schemes are shown to be perfectly absorbing in-

dependent of frequency and the angle of incidence of the wave in the case of a quiescent mean flow. In

the general case of a convecting mean flow, a number of techniques are combined to obtain an absorbing

layer exhibiting PML-like behavior. The efficiency of the proposed absorbing layer is illustrated through the

computation of benchmark problems in aero-acoustics.

Key words, acoustics, absorbing boundary conditions, hyperbolic systems

Subject classification. Applied and Numerical Mathematics, Fluid Mechanics

1. Introduction. When addressing wave-dominated problems, as found in aero-acoustics or electro-

magnetics, one is often facing the problem of how to accurately obtain infinite domain solutions using a finite

computational domain. The truncation of the computational domain must be done in a way that avoids, at

least approximately, the excitation of reflected waves which might otherwise contaminate the computational

domain and falsify the solution.

The issue of how to properly devise such boundary conditions at an artificial computational boundary

has received much attention in past. The use of characteristic boundary conditions [1] is appealing due to

its simplicity, but is only accurate for close to perpendicular incident of waves. More elaborate schemes

involve radiation boundary conditions based on localization of the Dirichlet-to-Neumann map [2, 3] or an

asymptotic cxpansion of thc fax-field solution [4]. A fairly recent review of such methods can be found in [5].

Alternatives to such schemes involve the introduction of buffer or sponge layers in which the waves are either

damped [6], accelerated to supersonic conditions [7], decelerated [8] or attenuated by combinations thereof

[9]. The construction of such schemes are in most cases based on physical argumcnts with little theoretical

evidence of their, often quite remarkable, performance.

In the context of electromagnetics, Berenger [10] recently proposed a novel way by which to derive the

sought after absorbing boundary conditions. By splitting Maxwell's equations in an unphysical manner, ad-

ditional degrees of freedom are introduced thus allowing for the construction of absorbing layers. These layers

have the remarkable property that they maintain their absorbing properties irrespective of the frequency

and angle of propagation of the incident wave, i.e. this approach appears to provide an optimal absorbing

boundary condition. These layers, called Perfectly Matched Layers (PML), are now under intensive research.
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research was partially supported by the National Aeronautics and Space Administration under NASA Contract Nos. NAS1-
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While the PML scheme has been applied successfully during the last years, it was recently proven [11] that

the splitting of Maxwell's equations makes the resulting set of equations only weakly well-posed and ill-posed

under arbitrary low order perturbations, i.e. the numerical schemes resulting from these equations can be

expected to be unconditionally unstable, an example of such being provided in [11]. This realization has

focused the attention towards alternative well-posed formulations of the electromagnetic PML methods and

several such schemes have been proposed in recent years, see. e.g. [12, 13, 14, 15, 16, 17]. Hence, although

the original approach for the construction of PML schemes have proven erroneous, the general approach have

proven extremely fruitful and allowed for the computation of problems in electromagnetics of unsurpassed

accuracy.

Inspired by the success of the PML methods for Maxwell's equations, Hu [18] recently proposed a PML

method for the equations of acoustics by taking an approach very similar to the one originally developed for

Maxwell's equations, i.e. by splitting the equations of acoustics in an unphysical manner. However, contrary

to most work within the community of electromagnetics, Hu [18] reported the need for using a low pass filter

inside the absorbing layers to maintain stability of the scheme. A similar observation was made in [19] where

no filter is applied and the numerical solutions are found to exhibit exponential growth. This points to an

inherent instability of the scheme for which a partial explanation, in terms of loss of strong well-posedness

in certain special cases, is providedin [19].

In the present work we provide a complete analysis of the split PML scheme of [18], confirming the

speculations put forward in [19] in a more general context. Indeed, the scheme of [18] is found to be only

weakly weU-posed in the two-dimensional case and ill-posed under low order perturbations. We proceed by

presenting a well-posed PML scheme for the quiescent equations of acoustics, and a well-posed absorbing

layer exhibiting PML-like behavior for the general convective case.

The remainder of this paper is organized as follows. In Sec. 2 we introduce the equations of acoustics

as obtained from the linearized Euler equations. Section 3 contains the first part of the paper in which we

present an analysis of the PML method recently proposed in [18] and provide an explanation for the problems

of stability reported in [18, 19]. This leads to Sec. 4, where we present an alternative to the unstable PML

scheme. For the case of a quiescent mean flow we construct a well behaved PML method and illustrate its

performance through numerical experiments. For the general case of a convective mean flow, we propose

to apply a combination of techniques to arrive at absorbing layers with PML-like behavior and support the

reasoning by numerical studies. Section 5 contains a few concluding remarks.

2. The Equations of Acoustics. We shall consider the two-dimensional compressible Euler equations,

linearized around a uniform parallel mean flow of the form (P0, u0, 0, p0)- Choosing v0 -- 0 does not introduce

any restrictions on the analysis as the general situation may always be rotated to arrive at this particular

case. Within this scenario, the equations take the form

(1) 0---t+ A + B -- 0 ,

where the state vector, q, and the constant matrices, A and B, are given as

(2) q =

P

U

V

P

, A=

M 1 0 0

0 M 0 1

0 0 M 0

0 1 0 M

, B=

0 0 1 0

0 0 0 0

0 0 0 1

0 0 1 0



Theseequationsarerecoveredfromthe Eulerequationsby linearizingaroundthe uniformmeanstate,
(P0,u0, 0, P0), and introducing the normalization

tco x y p u v p T

t L , x _,y L'q p0'c0 c0' '

where L represents a characteristic length while co = 7_-oo/po refers to the sound speed of the mean flow.

In this context, Eqs.(1)-(2), describes the propagation and interaction of waves in a parallel uniform flow

with a Mach number, M = uo/co.

A deeper understanding of the underlying properties, physical as well as mathematical, of Eqs.(1)-(2)

can be gained by introducing the similarity transform

1
S_--

2

1 2 0 1

1 0 0 -1

0 0 2 0

1 0 0 1

, S -1_

0 1 0 1

1 0 0 -1

0 0 1 0

0 -1 0 1

to obtain

S-1AS =

M+I 0 0 0

0 M 0 0

0 0 M 0

0 0 0 M-1

, S_IB S = 1
2

0 0 2 0

0 0 0 0

1 0 0 1

0 0 2 0

where S-lq = R = [1)+ u, p- p, v,p- U]T represents the characteristic variables. We recognize the con-

vective entropy (R2) and vorticity waves (R3), respectively, and the co- (R1) and counter-propagating (R4)

sounds waves through which the complete physical scenario can be understood.

However, the similarity transformation also shows that A and B can be transformed such as to become

symmetric simultaneously by multiplication with a positive definite diagonal matrix. Within the context of

the present work this has the consequence that Eqs.(1)-(2) forms a strongly well-posed hyperbolic system

[20] implying that the well-posedness of Eqs.(1)-(2) is unaffected by the addition of low order terms. As we

shall see shortly, lack of strong well-posedness can have serious consequences and make the construction of

convergent numerical schemes impossible due to inherent instabilities of the system of equations.

3. An Analysis of the Split-Field PML Method. Following the line of thought initiated in [10] for

the development of perfectly matched layers (PML) for electromagnetics, Hu [18] recently proposed a split-

field PML scheme for the two-dimensional linearized Euler equations as given in Eqs.(1)-(2). Different from

the approach of [10], in which only some of the field components are split, in [18] all the field components of

q are split to arrive at a set of equations to be solved in the layer of the form

(3) 0--t- + As + Bs + C_q s = 0 ,

where qS = [Pl, P2, Ul, u2, Vl, v2, Pl, P2]T, such that p = Pl + P2 and likewise for the velocity components and

the pressure. The 8 x 8 matrices in Eq.(3) become [18]



(4) A_=

M M 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1

0 0 M M 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 M M 0 0

0 0 1 1 0 0 M M

0 0 0 0 0 0 0 0

, B s _____

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

while C s = diag (ax, a u, ax, a_, au, a_, a_, ay) represents the diagonal matrix responsible for the dissipation

of the waves.

At first the use of split variables may seem perfectly legal since for a_ = a u = 0 the original equations

are recovered by adding the equations for the split fields. This reasoning, however, is faulty as we shall show

in the following.

Let us first address the issue of well-posedness of the split system of equations, Eqs. (3)-(4) and recall that

the question of well-posedness of the system is unaffected by the low order term, CSq s, which we therefore

neglect in the subsequent analysis. We first consider the diagonalizing similarity transform of A s given as

S

0 0 0 -I 1 0 1 1

0 0 0 1 0 0 0 0

0 0 -1 0 1 0 0 1
M--I "M_

0 0 1 0 -M 0 0 M
M--1

0 -1 0 0 0 0 0 0

0 1 0 0 0 1 0 0

-1 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0

, S -1

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0
-M 2 --I M M

0 0 _ _ 0 0 _

0 1 0 0 0 0 0 0

1 1 0 0 1 10 0 2 2 _

0 0 0 0 I 1 0 0

1 1 0 0 0 0 -I -I

I 1 1 1
0 0 _ _ 0 0 _

to obtain S-lAsS -- diag (0, 0, 0, 0, M - 1, M, M, M + 1), i.e., 4 zero eigenvalues have been introduced as

a consequence of the splitting. Now, if S and S -1 cannot transform B s into a matrix that can be made

symmetric by multiplication with a positive definite diagonal matrix, then A s and B s cannot be symmetrized

simultaneously [21]. Indeed, we obtain

S-1BsS =

0 0 0 0 0 1 0 0

0 0 0 0 -1 0 0 -1
M

0 0 0 0 0 M-v:$ 0 0

0 0 0 0 0 1 0 0

1
0 0 0 0 0 _ 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0

I
0 0 0 0 0 _ 0 0

which, due to the zeros in the left half, clearly can not be made symmetric. This observation, however, is not

conclusive in terms of lack of strong weU-posedness of Eqs.(3)-(4), but it remains a bad sign, since the split

set of equations has lost an important symmetry property as compared to the original un-split linearized

Euler equations, Eqs.(1)-(2).



TocontinuetheanalysisweshallfocustheattentionontheCauchyproblem,i.e.,neglecttheeffectof
theboundaryconditionsin Eqs.(3)-(4).WeintroducethespatialFouriertransformof qS as

/?f?qS (x, y, t) = gts ( kx, ky, t )e i(k_ +kv_) dkzdky ,
O0

where _ [¢31, ^ ...... T_'_ /)2, Ul, U2, Yl, v2,Pl,P2] represents the Fourier coefficients of the split field components to

arrive at the initial value problem

(5)

where the symbol, P(k_, ky),isgiven as

Ot -P(k_'ky)qS

(6) P(k_, ky) = -i

M k, M k_ k, kx 0 0 0 0

0 0 0 0 k u ky 0 0

0 0 0 0 0 0 k_ kx

0 0 Mk_ Mkx 0 0 0 0

0 0 0 0 0 0 ky k_

0 0 0 0 Mk_ Mk_ 0 0

0 0 k_ k_ 0 0 Mk_ Mk,

0 0 0 0 ky ky 0 0

Integration of Eqs.(5)-(6) is achieved by first realizing that the evolution of the individual split components

depends only on the un-split variables. Hence, by obtaining the solution of the Cauchy problem of Eqs. (1)- (2),

given on the form

0_
(7) -- = -iMk_ - ikxfi - ikyf;Ot

O_
-- iMk_-ik_i5 ,

Ot
O9
-- = -iMk_9 - iku_
Ot

o_
- iMk_- ik_fi- ikvO ,Ot

we may obtain the solution for the split field variables by introducing the solutions of the un-split variables

into Eqs.(5)-(6).

Considering the initial conditions

0(o) [_o,_ _ ^ _U0, VO, P0]

we obtain the solution to Eq.(7) as

(8) _(t) = ae -i(Mk_-v)t q- be -i(Mk_+u)t q- ce -iMk_t ,

with the three vectors a = [co, au, av, ap]T, b = [be, bu, by, bp]T and c = [cp, cu, cv, cp] T, having the entries



a m

--//

k=

ky

--//

/I

k=

k_

V

1

0

_o v2 - kx#

_oU 2 - ky#

0

Here we have

F"--

v=_/k_+k_ , _=fi0k=+90ky ,

and we have utilized that iS0 = 150 for consistency. In Eq.(8) we immediately recognize the three types of

waves, inherent in the linearized Euler equations, giving rise to three different wave speeds. Moreover, we

note that a and b as well as c are bounded for all values of k= and ku confirming that Eqs.(1)-(2) constitute

a strongly well-posed problem for which the solution can be bounded up to exponential growth in time by

the norm of the initial data.

Let us now continue in order to arrive at the solution of the Cauchy problem for 0_ = [_, u2, v2,_] T,

bearing in mind that we could equally well have chosen thc other set of equations. The dynamics of these 4

variables are described by the system

(9)
0p2

-- ikyfJ ,
Ot

Oft2
--=-iMkzfi ,
Ot

0_2
- iMk=f) ,

Ot

0_2
- ik_ .Ot

Integrating the solution, Eq.(8), we recover the solution to Eq.(9) on the form

(10) _, _i __e_____+_t + c_e-'-_Y _t#2(t) -- 02(0) = a_e -i-M-_-_t + O=e 2

where

sin
a_ = --i

2

kuav

Mk=au

M kxav

kyav

sin[ t]
b_ = -i

2

kybv

Mkzb=

Mkrbv

k_bv

and

sin [--M-_t]
Mk:

2

kuCv

Mk=cu

M k=c_

kyc_

For the split set of equations to be strongly well-posed we must ensure that the solution, Eq.(10), is bounded

by the norm of the initial data for any choice of k= and k_, or, in other words, a_, b_ and c_ must remain



boundedforanycombinationof k, and ky. It is easily verified that a_ and b_ indeed remain bounded for all

values of ks and ky provided the mean flow is purely subsonic, i.e. IMI < 1. However, absorbing boundary

conditions are not necessary in the case of supersonic flow as reflections from the open boundary are unable

to enter the computational domain and therefore will not cause any problems.

The situation for c_ is very different. In the limit where lMkxl ---, 0 and Ikyl >> IMkxl we can only

bound two of the terms in c_ as

(11) kyc sinLztj[M_M_k] < [c_kyIt
Mk_ -- '

2

i.e, we recover terms that grow in time with a coefficient, ku, which is unbounded. Hence, [[P2[[ and [IP2[[

cannot be bounded by the norm of the initial conditions, but rather depends also on the norm of the

derivatives of the initial conditions, u0 and v0. Consequently, the split set of equations, Eq.(3), is only

weakly well-posed with the solution depending not only on the initial conditions, but also on the smoothness

of these data.

It is noteworthy that, as is the case for the split field perfectly matched layer methods of electromagnetics

[10, 11], in the case where Ikyl = 0 strong well-posedness is recovered. Hence, the one-dimensional version

of the split field method for the perfectly matched layers of acoustics is valid and well suited for numerical

solution.

The loss of derivatives is as such not a severe problem. However, contrary to strongly well-posed

hyperbolic problems, it is well known that weakly well-posed systems may become ill-posed under low order

perturbations [20], thus rendering the systems of equations inherently unstable and proper numerical solution

impossible.

To see this, we introduce a low order perturbation of the form

E_ s =

0 0 0 0 0 0

0 0 0 0 ¢ -¢

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 E -E

0 0 0 0 0 0

0 0 0 0 E -_

0 0

0 0

0 0

0 0
@8 ,

0 0

0 0

0 0

0 0

i.e. the perturbation corresponds to a small perturbation in the split field velocity component, vl and _32,

however maintaining that _5= _31+ _32.

We consider the perturbed Cauchy problem

0¢)---_= (P(k_, k_) + E) 0 _ = 15¢)_ .
Ot

A necessary condition for the perturbed problem to remain well-posed is that the real parts of the eigenvalues

of 15 remain in the left half plane for any choice of kx and ku and, preferably, also for any choice of e and

M. The 4 eigenvalues of 15 are given as

A1 = A2 = Aa = 0 , A4 = -ik_M



whiletheremaining4eigenvaluesappearastherootsof acomplexpolynomial

P4(A) = 0/4 "_4 "4- C_3 _3 + a2 _2 + alX -_- ao ----- 0 ,

in which the coefficients are given as

a4 = l , a3 = e + i3Mkz , o_2 = k2_ + k2v - 3M2k_ + ie(ky + 2kzM)

a, = e(k2_ + 2k 2 - 3Mk, ky - M2k 2) + iMk,(k 2 - M2k, +2 k 2) ,

ao = i2eMk_k_(1 - M) .

Rather than solving the complex polynomial to obtain the expressions for the eigenvalues, we shall recall

the Routh-Hurwitz criteria expressing that all the roots, _, of an n'th-order polynomial, Pn(X), lies in the

left half plane if and only if the roots of the (n - 1)'th-order polynomial

n

* 2 n-i * i
Pn-i(A) = [anion_ 1 +an-la n - ana*A] Pn(A) +a, AE(-1) aiA ,

i=0

lies in the left half plane and the real part of an-i/an is positive. Hence, by successively applying this result

we arrive at criteria under which the perturbed initial value problem remains well-posed.

The first condition immediately yields the requirement that Re(a3/a4) = e > 0 which certainly is a bad

sign since we can not in general control the sign of the perturbation. However, one additional application of

the Routh-Hurwitz criteria results in a condition for well-posedness as

IMk.I > Ik_l •

This condition is very similar to the limit for boundedness of c_, Eq.(11), and confirms that the weakly

well-posed system, arrived at by splitting the linearized Euler equations to facilitate the development of

the perfectly matched layers, becomes ill-posed under low order perturbations. We should note that there

is nothing particular about the low order perturbation, E. Indeed, ill-posedness can be shown, using the

technique outlined above, for perturbations of the velocity components as well as of the density and pressure

components.

Due to finite precision, low order perturbations will always exist in actual implementations of the split

field equations, i.e., problems with maintaining stability of these schemes should be expected. Indeed, this

is exactly what was reported in [18, 19] where it was found that applying a filter in the PML layers was

necessary to maintain stability. An indication of why the filter has a stabilizing effect for this problem is

provided by the condition for boundedness, Eq.(ll). Indeed, if the filter is sufficiently strong as to ensure

that IMk_] > Ik_l for all values of Ik_l and Ikyl, e.g. by enforcing a strong filter along y, the system remains

well-posed and, as a consequence, the scheme might recover stability or at least postpone the effects of the

instability.

4. The Construction of Well-posed PML Methods. The inherent instability appearing as a result

of the splitting of the linearized Euler equations illustrates the care that has to be exercised in devising

absorbing layers for such types of equations.



Theweaklywell-posednessandassociatedill-posednessundersmallperturbationsofthesplit-fieldPML
equationswasrecentlyshown[11]alsofortheoriginalPMLmethodasproposedin [10]andseveralsuccessful
attemptshavebeenmadeto formulatestronglywell-posedPMLmethodsfortheequationsofelectromag-
netics[12,13,14,16,17].Hence,ratherthanattemptinganab initiodevelopmentof perfectlyabsorbing
layersforthelinearizedEulerequations,weshallutilizethisrecentdevelopmentto arriveat thesoughtafter
wellbehavedmethods.

A stronglywell-posedPMLmethodforMaxwell'sequationsisproposedin [17]andtestednumerically
in [16]andweshallbasetheremainingpartof this paperon thisparticularformulation.Weshouldem-
phasizethoughthat alternativewell-posedformulationsmightequallywellbeemployedasthebasisof the
developmentofthePMLmethodsfortheequationsofacoustics.

In whatremainswerestricttheattentionto thecaseof a purelysubsonicfreestream,i.e. IMI < 1
in Eq.(1).Thisposesnorestrictionson theanalysisandtheapplicabilityof theproposedschemesasthe
situationforIMI> 1istrivialsinceallinformationisleavingthecomputationaldomainand,asinformationis
prohibitedfrompropagatingupstream,reflectionscannotenterthedomainandinterferewith thecomputed
results.

4.1. The QuiescentCase. Let us first consider the simple case of a quiescent free-stream, i.e. M -- 0,

for which the equations are given as

(12)
Op Ou Ov

Ot cOx Oy '

Ou Op
COt COx '

cOv cOp

cOt cOy '

Op cOu cOy

Ot COx COy '

appearing directly from Eqs.(1)-(2).

We propose to consider an absorbing layer for the quiescent linearized Euler equations of the form

(13)
cOp _ cOu
cOt Ox

cou Op
COt COx

COv COp

cOt cOy

cOp Ou

Ot cOx

cOy

s' Q_ _ g' Qy ,
cOy

2CU -- "---cPx

2#v - _P_ ,

cOy

e'Q. - #'Q_ ,
Oy

cOPs OQ_
-- _U , -- eQx + u ,

Ot COt

cOPy cOQ y
cot #v , COt #QY + v .

Here, e = ¢(x) and # = it(y) signifies the non-dimensional damping parameters. We immediately note

that since the Euler equations are altered by the introduction of low-order terms only, the system of partial

differential equations is well-posed by construction while the additional freedom required for obtaining the



soughtafterpropertiesof the matched layers are introduced through 4 additional equations describing the

development of the artificial fields, P_ and Q_, along x and, likewise, P_ and Q_, along y. In general, we

assume that the absorbing region is outside a square bounded by Ixl = a and tYl -- b while the specification

of the parameters, c and # remains open at this point in time.

To come to an understanding of the properties of this absorbing layer, we follow the analysis introduced

in [11] and study the behavior of a plane wave hitting the layer interface, which we assume is positioned

at x = 0. As the system we are dealing with is purely linear, it poses no restrictions to consider only the

behavior of plane waves, since any type of excitation can be decomposed into a superposition of such plane

waves of the form

p [1 1[

(14) u = [ _ I ei_(t_ax_f_y ) ,v zl

where _2 + _2 = 1 represents the arbitrary angle of incidence and w signifies the normalized frequency of

the incoming wave.

We shall seek solutions inside a layer in the x-direction, i.e ju(y) = 0 in Eq.(13), of the form

p p(z) ]
u

v _(x) ei_(t__y )(15) =

p #(z) I
I
j

and shall obtain the full solutions for the fields inside the layer•

Introducing Eq. (15) into Eq. (13) yields the equations

thus expressing 4 of the 6 variables in terms of fi and/5. The latter are governed by the coupled equations

d ¢2 d

$(M ' _XX

where we have introduced _b(x) = iw + e(x). Combining these two equations yields a second order variable

coefficient ODE for 15on the form

d/ld \
-- I _ _-_1 = _bo_2P ,
dx \Wax- /

which has an analytical solution given by

(17) _(x) ----Ae '_ f_ ¢('l)d'7 + Be-_ f_ ¢('7) d"

through which we immediately obtain the solution to fi as

10



(18) _(x)-- ¢_ _5(x)=-a_- Ae_fo_(')dU-Be-_fo ¢(n)a"

The remaining fields are then given from this using Eq. (16).

The specification A and B naturally depends on thc boundary conditions we choose to impose and,

indeed, there are several ways of doing so. We shall assume that the layer has a finite width, d, and shall

hence need to impose boundary conditions at x = 0 and x -- d. For the solution of hyperbolic systems it is

most natural to impose characteristic boundary conditions by specifying the incoming characteristics. This

amounts to requiring that R1 = p + u remains continuous across the interface x = 0 while R4 = p - u = 0 at

x = d, i.e. no information is entering the layer. Imposing these boundary conditions, using Eq.(14), implies

, p(a) -

from which we arrive at (a _ 0)

(19) A - a-'_e_2_iB , B = 1
a__X_.7_ 1--c_ e-2aI

where

fo fode(d) + iw I = ¢(7) d_? = iwd + _(_?) d_ .
"_-- iw '

Combining Eq.(16) with Eqs.(17)-(19) yields the complete solution inside the layer,

(20) p(x,y,t) = B [l + a--'_e2'_a(_-a)e-2a f_e('7)d'71e_"_(t-az-Z_)e-_ foe('7)d_

iw l---- -'_e2,.,_(__a)e 2_ f: _(,)d,7 ei,,(t-_-Zy)e-_ fo _(,)a,
=

v(x, y,t) = 13B 1 + --- 7e2i_a(z-U)e-2a f: e(n) dn e,W(t .... Zy)e-_ fo e(rl) dn

p(x,y,t)=B[l+a--_/e2_(z-d)e-2_f:_(_)d_]e'_(t-ax-_Y)e-_f:_(_) a_a+_7

P_(x,y,t) = -Ba (x;-+ iw

iw[a _] •Q_(x,y,t) = Ba (_(x ) + iw)2 1 _ _--'/e2"_(_-d)e-_ f: _(,)d,_ e_(t___,y)e-_ fo _(,_)d,_

Since _-_ < 1 all components in the layer are bounded by IPl which is bounded like a°o-__ _< 0 with

equality only for gazing waves, i.e. a = 0. Thus, all waves are damped independent of frequency and angle

of incidence as should be required by a truly perfectly matched layer.

We observe that the fields at the layer interface, x = 0, in general are discontinuous with a jump

proportional

1 ± a--_e-2iwade-2al

_-_ l-C_ e_2c_l ,1 + _+_ Y4_

which, however, is exponentially small.

Naturally, an analysis equivalent to the above can be completed for a PML layer in the y-direction while

a corner region, in which e > 0 as well as # > O, can be analyzed using separation of variables, yielding

results similar to those obtained in the layer above.
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4.1.1. A Numerical Example. In order to confirm the theoretical analysis put forward in the previous

section and study the efficiency of this new PML method, we have implemented the scheme on an equidistant

grid using a 4'th order, centered, finite-difference scheme with 3'rd order closure for stability in space, while

we use a 4'th order Runge-Kutta scheme for advancing the system, Eq.(12), in time. The time step, At, is

chosen to be well below the stability limit.

We note that contrary to the scheme proposed in [18], there is no need for applying a filter to maintain

stability and, to emphasize this point, we have not used any filters in the present work.

The initial conditions are taken from a benchmark problem of computational aeroacoustics found in [22],

namely

(21) p(z, y) = e + 0.1e

u(x,y)= 0.05(y yb)e -(l_2)C_-+b_2+(y-_2

(z-®b)2+(_-V_) 2

v(x, y) = -0.05(x - xb)e -(t"2)

-(ln2) (_- =_)26+2(v-u° )2p(x, y) = e

where (x,, y,) signifies the center of the initial sound pulse of width 5,, while (Xb, Yb) refers to the center of

the initial vorticity and entropy pulse of width 5b- The analytic solution to this problem may be obtained by

cxploiting the axis-symmetry of the initial conditions together with the use of Fourier transformation. The

exact expressions for the solution arc given in [22].

The profiles, E(x) and _(y), required in the specification of the scheme, Eq.(13), are taken to be of the

form

<:++> +ix>:+'+ .ly>=c,, °
\ XpML ] \ YPML /

Here we have assumed that the computational domain in which Eq.(12) is solved is bounded by Ixl < a

and lYl -< b while XpML and YPML refers to the width of the absorbing layers along x and y, respectively.

The constants, Cz, Cy and n, controls the strength of the layer and we have chosen these parameters as

Cx -- Cy = 2 and n = 3. The auxiliary equations of Eq.(13) are advanced in time using the same scheme

and time-step as for Eq.(12).

We consider the problem in the computational domain (x, y) E [-50, 50] 2 with the absorbing layers

outside and position the acoustics pulse at (xa,ya) ---- (--25,0) with a width of 5, = 3 while the non-

propagating vorticity/entropy pulse is positioned at (Xb, Yb) ----(25, 0) with a width of 5b ----4. The absorbing

layers are terminated using characteristic boundary conditions as discussed during the analysis of the scheme.

In Fig. 1 we show the pressure field at various times as computed using Ax -- Ay ----1 and At ----1 and

XpML = YPML = 10, i.e. 10 computational cells in the absorbing layer.

As expected from the analysis, the sound wave propagates undisturbed out of the computational domain

with no visible reflections. The high frequency noise visible on the contours is a consequence of the accuracy

of the scheme and the lack of filtering, rather than a result of reflections as can also be observed on Fig. 2,

where we show the u-velocity field propagating undisturbed out of the computational domain.

To verify the dependency of the efficiency of the absorbing layer on the width of the layer, we have

computed the maximum pressure error along the line x -- -48 as a function of time. In Fig. 3 we show

12
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FIG. 1. Pressure contours for a sound pulse, propagating in a quiescent medium. The contour levels are 5=0.1, 5=0.05, 5=0.01

and 5=0.005 with the computed result given at t = 20 (a), t = 40 (b), t = 60 (c) and t = 80 (d).

the development of the pressure error for various layer widths as compared with using only characteristic

boundary conditions to terminate the computational domain.

Indeed, as expected, we see that even for a layer of only 6 cells the PML scheme out-perform the

characteristic BC in terms of accuracy while increasing the width of the layer yields a significant increase in

accuracy.

As compared to the scheme put forward in [18] we observe a slight increase in the maximum error

which is consistent with the observations made in [16] comparing the split and un-split PML methods for

Maxwell's equations. A direct comparison, however, is difficult due to differences in the computational

scheme and boundary conditions. We emphasize, though, that the present results are arrived at without the

use of filtering, thus confirming the stability of the scheme given in Eq.(13) and the associated analysis of

well-posedness and decaying properties of the fields inside the layers.

4.2. The Convecting Case. While the development of PML methods for the quiescent equations of

acoustics relies on the analogy with the equations of electromagnetics, no such connection is possible in the
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more general case of a convecting mean flow.

The first idea that comes to mind is to introduce a new reference frame, moving with a speed of M

along x and then apply the PML scheme developed in Sec. 4.1. This approach, however, has the unfortunate

consequence that the layer interface becomes a moving interface in physical space.

In [23] the use of a Lorentz-like transformation, connecting the convecting and quiescent wave-equations,

is suggested in order to transform the quiescent PML method, such as to be useful in the convecting case.

While this approach turns out to work well for the sound-waves, the resulting PML method has an abruptly

changing convective velocity for the entropy and vorticity waves, resulting in significant reflection from such

waves becoming quiescent exactly at the layer-interface. Moreover, the correct use of this approach in the

corner regions of the PML layers is much less clear.

Here we shall take a different approach although we shall rely on the PML schemes developed in the

previous section combined with a few other techniques. Introducing layers in which the flow is accelerated into

a supersonic region, thereby eliminating the need for absorbing boundary conditions, was recently proposed

14



10 -_

10.2

I 10 .3
o_
&

10 4

Characteristic BC

xp., = 6

=

, t , I , t , _ I , , , , I _ ; _ , I I I I I

O-So 25 50 75 1O0 125
1

Time

FIG. 3. Maximum error at x = -48 as a function of time as computed with different types of boundary conditions and

varying midth of the PML layer.

in [7] and modified in [9]. While this approach is appealing, it has an undesirable effect on the time-step of

the whole computation and primitive sponge layers are still needed to yield an acceptable performance [9].

We propose to decelerate the flow, rather than accelerating it, to approach a quiescent flow inside the

layer and then combine this approach with the PML scheme developed in Sec. 4.1. While such a scheme

cannot be expected to be perfectly absorbing in the case of a finite layer, it does have the potential of

a very efficient absorption, provided the deceleration is sufficiently smooth and the layer width is chosen

accordingly.

We propose to consider a PML-like scheme for the convecting case, Eqs.(1)-(2), of the form

(23)
Op Op _ Ou
0---/+ M [1 - m(x)] Ox Ox

Ou Ou _ Op
O--t + M [1 - m(x)] Ox Ox

Ov Ov _ Op
0--t + M [1 - m(x)] Ox Oy

Op + M[l_m(x)] Op _ Ou
Ot Ox Ox

_V

_y
_IQz t-ltQ_-aMp ,

2_2t -- EPx

21_v - #Py - aMy ,

_U

_lQz I-_Qv ,
Oy

OP= OQ=
-- cu , -- _=q-u ,Ot Ot

OPy aQu
Ot #v Ot #Qv + v .

Here _ and # remains unchanged from Sec. 4.1. We have introduced re(x), which provides the decelerating
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term by being m(a) _- O, with x = a signifies the layer interface, while m(a + XpML) _-- 1 at the termination

of the absorbing layer. We have found that using the error function provides a good compromise between

steepness and smoothness such that

(24) 1+ ]0 e dt ,

where z = (x - a)/XpML and am and xm controls the steepness and relative position of the profile, re-

spectively. In Eq.(23) we have also introduced simple absorbing terms in the equations for p and v. Since

the quiescent PML scheme only provides perfect absorption for the sound waves, this is meant to provide

a simple mechanism for damping of the entropy and vorticity waves inside the layer. The parameters a(x)

can be used to control the strength of this sponge layer for p and v.

A few comments regarding the scheme, Eq.(23), is appropriate. First of all we note that for M = 0 we

recover Eq.(13). Also since only the diagonal entries of A in Eqs. (1)-(2) are altered the well-posedness of the

equations of acoustics remains intact. The philosophy here is that as the convective waves are slowed down,

they approach the case of the quiescent acoustics for which Eq.(13) was shown to perform well. Moreover,

slowly decelerating the waves as they enter the layer has the beneficial consequence that the wave fronts

become increasingly normal to the boundary of the layer - much like water waves always being aligned with

the beazhfront. Hence, applying characteristic boundary conditions for truncating the PML layer can be

expected to be efficient.

4.2.1. A Numerical Example. In order to establish the soundness of the arguments that lead to the

PML-like scheme given in Eq.(23), we have conducted a number of experiments using the scheme and initial

conditions described in Sec. 4.1.1 and taking M -- 0.5 as the convective Mach number of the mean flow.

The decelerating term, Eq.(24) is generally specified by using am = 5 and Xm ----0.5, i.e. the profile is

centered in the middle of the absorbing layer. We have taken a(x) = c(x), although this is by no means a

unique choice and alternatives might well yield better performance that reported here.

Since the layer now has multiple functions, i.e. it decelerates the waves while also acting as an absorbing

layer, it is expected that, compared to the quiescent case, slightly wider layers should be used to achieve an

acceptable accuracy.

In Fig. 4 we show the temporal development of the density for the initial conditions given in Eq.(21)

with _ and # being given in Eq.(22) and the parameters chosen as in Sec. 4.1.1. We have taken the width

of the layer as XpML = YPML = 20, i.e. 20 computational cells, and At = 0.5. The exact solution is given

in [22].
As expected, the sound pulse, as well as the entropy pulse, leaves the computational domain with no

noticeable reflections from the layer. In Fig. 5 we show the development of the u-velocity component,

arriving at similar conclusions.

To address, in a more quantitative manner, the accuracy of the proposed scheme as a function of the

width of the layer we have computed the maximum error in the pressure along the line x -- 48 as a function

of time. In Fig. 6 we plot the results for increasing width of the layer and compare to the accuracy obtained

when using only a characteristic boundary condition to terminated the computational domain.

Indeed we find that using a layer of only 10 cells yields an overall accuracy of the order of the approxi-

mation error of the scheme and is superior to that obtained using characteristic boundary conditions only.

By increasing the width of the layer to 20 cells, we observe a significant reduction, much like the case of the

true PML in Fig. 3, of the reflections from the layer.
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FIG. 4. Density contours for a sound and entropy pulse, propagating in a convecting medium with M = 0.5. The contour

levels are 5=0.1, q-0.05,5=0.01 and 5=0.005 with the computed result given at t = 15 (a), t = 30 (b), t = 45 (c) and t = 60 (d).

As expected, a slightly wider layer, as compared to the results in Sec. 4.1.1, is required in order to obtain

an acceptable accuracy. However, rather than increasing the number of cells in the layer one could use a

mapping, thereby stretching the grid, combined with a filter inside the layer. This approach was proposed

in [6] for the case of acoustics and successfully used for the case of electromagnetics in [15, 16]. While this

approach, certainly, will improve on the performance of the scheme with only little extra computational

effort, we have chosen not to implement this technique in order to emphasize that the present schemes do

not require the use of a filter in order to maintain stability.

5. Concluding Remarks. The purpose of this paper has been two-fold. In the first part of the paper

we provide an analysis of a recently proposed PML method for the equations of acoustics [18]. As remarked

in [18, 19] these PML methods suffer from intrinsic numerical instabilities and we provided an explanation for

this in terms of loss of well-posedness of the split set of equations and, as a result of this, the appearance of

ill-posedness under small arbitrary perturbations. Such perturbations will inevitably exist in any numerical

implementation of the split set of equations, rendering the schemes inherently unstable unless some kind of
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high-frequency damping, e.g. in the form of a low-pass filter, is introduced.

The use of filters is a subject of some controversy. We believe, however, that while there might be

numerous physical arguments for applying filters in various situations, it is somewhat of a concern if the

numerical scheme, rather than the physics, dictates the need for a filter as is the case of the PML methods

in [18]. Indeed, in situations where smooth initial conditions and only smooth boundaries are considered it

is troublesome if the solution of a linear hyperbolic system requires the use of filters.

In the second part of the paper we present a PML scheme for the quiescent equations of acoustics

and prove that it is indeed absorbing for all frequencies and angles of incidence while remaining strongly

well-posed. The properties of the layer is studied in more detail through numerical tests, confirming the

analysis.

In the general case of a convecting mean flow, the situation is no perfectly resolved. While we present an

absorbing layer scheme that exhibit PML-like behavior, it is not a PML method, but rather a scheme arrived
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at by combining several techniques. The scheme remains well-posed and performs well, although it requires

the use of a slightly wider layer as compared to the true PML method presented earlier. The advantage of

this scheme is that it contains the true PML scheme in the limit of a vanishing mean velocity and extends

trivially to the general case of a mean flow which is not aligned with the axis.

The development of a true well-posed PML method for the convective equations of acoustics remains a

open challenge and we hope to address this in a future paper.
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